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The motion of a heavy solid with a fixed point whose inertial tensor and the centre of mass (which does not 

coincide with the point of support) satisfy the Hess-Appelrot (HA) conditions is considered. At the zeroth 

value of the areas constant, the gyroscope has an unstable position of equilibrium at which the radius vector 

drawn from the point of support to the centre of mass is directed vertically upwards. Solutions which are 

asymptotic to this position of equilibrium form two-dimensional ingoing and outgoing separatrices which 

satisfy the Hess conditions and are therefore identical (they are paired). The motion close to a paired 

separatrix is considered (when, generally speaking, the particular Hess integral may be non-zero) and 

families of long-period solutions are found. Splitting of the separatrices when an HA gyroscope is perturbed 

is studied. The results obtained are used to investigate the separatrices of a perturbed Lagrange problem for 

a value of the areas constant close to zero. In particular, the occurrence of double-detour homoclinic 

solutions, which leads to the non-integrability of the problem, is demonstrated in the case of a zero value for 

the areas constant. The occurrence of single-detour homoclinic solutions of the perturbed Lagrange 

problem, leading to non-integrability for non-zero values of the areas constant has previously been found 

in [l]. 

1. FORMULATION OF THE PROBLEM 

IN A NUMBER of cases it is convenient to make use of a special system of coordinates [2, 31 in the 
study of a solid with a fixed point, that is, a Cartesian system of coordinates which is rigidly fixed in 
the body where the unit vector directed from the point of support to the centre of gravity has the 
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form r. = (1, 0,O) and the kinetic energy T is expressed in terms of the components of the vector 
G = (x, y, z) of the kinetic moment using the formula 

2T=(AG,G)= 02 +ary2 +a2z2 +2x(&y tb2z) 

n 

a br b2 

A=(&= bl al 0 (i,j=O, 1,2) 

b2 0 02 

(A is the corresponding gyrational tensor). The equations of motion have the form 

G’=GXotrroX7, 7*=7x0 (1.1) 

and possess the following integrals: the geometric integral (y, 7) = 1, the areas integral (G, 7) = j 
and the energy integral E = T- T-ye. Here, y = (‘yo, yl, -y2) is a unit vector which indicates the 
direction of the force of gravity (vertically downwards), w = AG = (coo, ml, w;?) = (p, q, r) is an 
angular velocity vector and I is the product of the weight of the body by the distance from the fixed 
point up to its centre of gravity. 

An HA gyroscope is characterized by the conditions al = a2 = a*. By rotating the special system 
of coordinates around the first axis it is possible to satisfy the conditions b2 = 0, bl>O [3]. The 
corresponding equations of motion admit of the particular Hess integral x = 0. It is convenient to 
put c = 2blla* and to change to the dimensionless variables 

oi = 2m~;o:c, G =G’m 

j=j’m, t=t’/&i? E=rh 
W) 

after which the equations take the form [3] 

(1.3) 

in polar coordinates w; = pcoscp, w; = psincp. 
In the general case p” is an elliptic function of time which varies between the two non-negative 

roots of the polynomial P(U) = f(G). It follows from (1.3) that the geometric, areas and energy 
integrals and the particular Hess integral are independent everywhere at a two-dimensional 
common level in six-dimensional phase space apart from in the case of precessional motions 
(y. = const) which correspond to the case when p’ is identically equal to the multiple root of the 
polynomial P. The corresponding constraint on the integrals has the form h = 1, j = 0 or [3] 
2c [h3 - 9h - (h2 + 3)3’2] + 27jf2 = 0. In the first case, all of the motions are doubly asymptotic to the 
unstable position of equilibrium and this situation is discussed below. In the second case, the range 
of variation of p and, correspondingly, the common level of the integrals, degenerate into a single 
point and trajectory of the precessional motion, 

At a zero value of the areas constant j and the critical value h = 1 of constant energy, the solution 
of the first equation (1.3) has the form 

p=fl/chr, r ?mt’ tto =&%tttO, to = const 

The second equation (1.3) is solved by the method of separation of variables (since j = 0): 

sincp = thg, cosv = e/&g 

Here and henceforth, we shall use the notation g = C - 2carctge: where C is a real constant and 
E = + 1. The solutions which have been found are doubly asymptotic to the position of equilibrium 
and, in the dimensionless variables o:, G’ = (x’, y’, z’), they have the form 
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ea 
y’zw)l = - 

chrchg ’ 

2 sh7 shr 
70 = - -1, 71=-2- 

ch2 r ch2 7 
thg, 72 =2e 

ch2 rchg 
(1.4) 

On passin from the dimensionless variables y’ and z’ to the initial variables y and z, the 
coefficient $_ 2c in (1.4) is replaced by 2dI’la* . When c = 0, we have the well-known doubly 
asymptotic planar motions of a Lagrange gyroscope (the motions of a mathematical pendulum). 

Hence, the solutions (1.4) are numbered with the sets (C, E). We note that the pairs of cases 
C= -w, E= +1 and C= +m, E = *l are identical and the corresponding solutions are planar 
(pendulum-type) solutions: y = 0, y3 = 0. The fact that the gyroscopic motions, which are asymptotic 
to the equilibrium position, are Hessian was apparently pointed out for the first time by Appelrot 
[4, p. 1301. 

Let us now consider the rotation of an asymmetric Euler-Poinsot gyroscope around the central axis of 
inertia. Then, the eigenvalues of the corresponding monodromy matrix of the mapping after a period, which 
differ from unity, have the form exp (+27rA), where A > 0 is a certain quantity [5,6]. It can be shown that in the 
limit A = cl2 = b,la* if one considers rapid rotations of an HA gyroscope with c>O (in the case when c = 0, an 
HA gyroscope is a Lagrange gyroscope and, in the case when c>O, it has an asymmetric ellipsoid of inertia). 
The set of all possible values of A forms [7] the interval (0; 1) and, as is well known, in the case of a body with a 
specified asymmetric inertial tensor, it is possible to choose the position of the centre of mass which differs from 
the point of support in such a manner that the Hess condition is satisfied. The set of possible values of c is 
therefore [O; 2). (It has previously been shown in [8] that cc2 but there was no discussion as to which of the 
above-mentioned values may be taken.) If, however, the body contains an ellipsoidal cavity filled with an 
incompressible idea1 fluid which executes non-vortex motions, then any values of A >O and, correspondingly of 
c>O, may be taken [9]. 

We note that, according to the geometric picture of the motion given by Zhukovskii (see [4, lo]), the centre 
of mass of an HA gyroscope moves as a certain spherical pendulum with the same values of the energy and area 
integrals and with the same kinetic moment. In particular, when j = 0, this pendulum executes planar motions. 

2. CONSTRUCTION OF THE RECURRENCE MAPPING FOR MOTIONS CLOSE TO THE 
SEPARATRIX 

Close to the position of equilibrium 0: G = 0, y = (- 1, 0, 0) of the system (1.1) it is possible to 
choose y, z, y1 and -y2 as local coordinates at a level M4C R6 of the geometric and j = 0 area 
integrals. According to (1.2) and (1.4), the relationships (only the upper or lower signs are taken) 

y _ 4me*7cos~i, -yl - frle*‘sincp, 

z - 4me*‘sincp,, 72 - T4efrcoscp,, f’T” 

hold in the case of solutions which are asymptotic to the point 0, where m = d/T/a* and cp+ are 
the limiting values of the angles cp: 

sinq_ = thC, coscp_ =e/chC 

sincp, = th(C - cn), cosv, = e/ch(C - cn) 

Hence, in the linear approximation, the outgoing separatrix W- is defined by the conditions 
X, = Y+ = 0 and the ingoing separatrix W+ is defined by the conditions X- = Y- = 0, where the 
new local coordinates are related to the old coordinates by the relationships 

y=2m(X_ +X+), rl =2(Y_ -Y+) 

z = 2m(Y_ t Y+), 72 =2(X+ -X,) 

and, moreover, for asymptotic solutions in the linear approximation 
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XT = 2efrcosqT, Yr = 2efrslncp,, t+ T-J (2.1) 
The reduced system in M4 is Hamiltonian and the corresponding Poisson brackets have the 

standard form [ll]. Calculations show that 

IX_,Y_l = IX-, Y+l = IY_,X+i = IX+,Y+l =o 

IX-, X+1 = 1 Y-, Y+ 1 = 1/(8m) 

at the point 0. It is therefore possible to introduce the canonically conjugate variables P = (pl , p2), 
Q = (ql, q2) such that 

(P,,Pz)=2W(X+9 Y+), (41,42)=26$X-, Y-1 

at the point 0 in the linear approximation. 
Next, the character& exponents of the linearized system at the point 0 form two pairs of 

identical numbers fd/a*I, that is, there is a second-order resonance. By carrying out successive 
steps of the Birkhoff normalization procedure, it is possible to remove the non-resonant terms in the 
Hamiltonian H of the reduced system. 

Let us introduce the notation (1 PII = dpf +pg , 11 Q/l = dqf + q2 2 and note that terms of the orders 

IIf’lllIQll’, IlQllllJ’ll’~ h w ere ra2, are far from resonance terms. Their subsequent annihilation does 
not lead to the appearance of small denominators and the corresponding procedure of partial 
normalization converges (compare with [12]). Thus, in the neighbourhood of a point OE M4, 
canonically conjugate variables exist at which the Hamiltonian (a constant of the energy) has the 
form 

H=P(p,q, +p2q2)+cqIA211QY2), k-’ =&F 

(apart from an unimportant constant term) and the separatrices are defined by the conditions: 

IV-:P=O; w+:e=o 

Lets =p2ql-m2. 

As local coordinates which are tranverse to the two-dimensional separatrix, it is convenient to take s (or X) 
and H. We have 

x ‘YY, + z-r, = Bm(X+ Y_ - X_ Y+) = --s 

apart from higher-order terms. Next, in the approximation which is linear with respect to s and H, Q is 
expressed in terms of P, s and H using the formula 

(q,,q*)= IIPII-‘(s(P,,-P,)+kH(p,,P1)) (2.2) 

and P is expressed in terms of Q, s’ = s and H using the analogous formula 

(P,,P1)=IIQII-z(-s’(q,,-q,)+kH(q,,q,)) 

If 0 = IIPllIlQll, h t en w2 = s2 + (/LH)~, apart from higher-order terms in s and H. The quantity w 
characterizes the distance to the separatrix at the level of the integrals, M4. Let us also introduce the 
angles 0 and 8’: 

(pr,pz)= IIPII(cosf3,sin6). (q1,q2)= IlQll(cos0’,sin0’) 

It follows from (2.2) that 

(2.3) 

1 

0 - arc @[sl(kH)l , H>O 

e’= e -‘hnsigns, H=O (2.4) 

0iff- arctg[sl(kH)l, H-CO 

Furthermore, the magnitudes of w, s, 0 and 8’ only vary slightly during motion close to the hyperbolic point 
0. In fact, it is seen that the terms O(o*) in the Hamiltonian H have a small effect on the change in these 
quantities (which remain constant in the corresponding linearized system). More accurately speaking, the 
relationships 
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hold in a certain complex neighbourhood of the point 0 (here s, w, 0 and 0’ are already complex quantities). 
Here and subsequently, a dot denotes differentiation with respect to dimensional time t. Let us now introduce 
the real regular analytic three-dimensional areas II* which transversally intersect all real solutions lying in W’. 
It may be assumed that the area II+ is defined by the condition IlPll = const>O and n- is defined by the 
condition (1 Q]l = const >O. Then, a neighbourhood U of the set g = W+ n II+ is found in II+ such that an 
analytic mapping .Sc: LRg+ II- along the trajectories of the reduced system is defined.The corresponding time 
of the motion is T = 0 (-In w) and the increments in the quantities being considered are 

IAsbl, IAw/wl, lAoI, lAO’l<O(Tw)=U(wlnw) 

These estimates remain valid if one considers segments of W ‘, II’ and g which lie in a complex space close to 
the corresponding real objects. The real recurrence mapping Se: (H, s, O)+(H, s’, 0’) is defined by the 
approximate formulas S’ = s and (2.4) and the corresponding error turns out to be an analytic function which is 
O(wlnw)-small in the sense of the following definition. 

Definition. We shall say that an analytic function S: (H, s, @+(H’, s’, e’), defined in U\g with 
values in II- is O[(f(w)]-small if the magnitude of 13’ is O[f(w)]-small and the quantities H’ and s’ 
are O[wf(o)]-small in a complex domain which is a Ci-neighbourhood with respect to the 0 
coordinate and a Cro-neighbourhood with respect to the H and s coordinates of the real domain 
where w does not change by a factor of more than C, . Here Cr and C, are certain positive constants. 
Hence, if the coordinates, s, s’, Hand H’ are “stretched” such that the magnitude of w becomes of 
the order of unity, the function S becomes O[~(W)] -small in a certain fixed complex domain (small 
in a C”-norm). In particular, all of its derivatives will be of the same order of smallness. 

Terms of the orders ]lP]]“]jQ]]P, where a//3> 2 or p/c~ 32 far from resonance terms can be 
eliminated in the Hamiltonian H by means of a certain canonical substitution. The series, defining 
H, then converges at fairly small values of the product w = /P]]]] Q]] even if one of the factors is not 
small. By using this fact, it is possible to extend the coordinates P and Q into the neighbourhood V 

of a paired separatrix W such that the closure of V does not contain the point 0. The 
above-mentioned extension can be carried out using two methods: along the separatrix W- (the 
coordinates P-, Q-) and along the separatrix Wf (the coordinates P+, Q+). 

Let us find the corresponding transition formulas in the domain V (compare with [7, 91). 
It follows from (2.1) that, in the linear approximation I] Q-11 = 2=, t+ --co and I[P+ /I = 2-, 

t+ +m in the case of doubly asymptotic solutions. Here, since P+ = -k-‘P+ and Q-’ = k-‘Q- on the 
separatrix W, the identity ]IP+ ]/]I Q- (I = 32 m is satisfied everywhere in W. Furthermore, in the doubly 
asymptotic solutions, the differential dx satisfies the equation in the variations d(&)ldt’ = -A, and ds is 
conserved. In this case dx+ (dw), for t-+ -I w, where dr, = dr- ch (C - c7r)lchC. On the other hand, x = --s is 
satisfied at the hyperbolic point 0 with an error in terms of higher than the second order and, hence, 
a!~’ = -ak, a2 = -dx+, where the quantities s’ and s (=pzqr-plq2) correspond to the systems of 
coordinates P-, Q- and Pi, Q’. F or each solution lying on the separatrix W, the angles 0 and 0’, which are 
related to P+ and Q- by formulas (2.3), are constant quantities. Hence 0 = ‘p+ and 0’ = cp_ . 

With an O(w)-small error in the case of the given definition, the transition formulas Sr : (H, s’, 

0’)+ (H, s, 0) have the form 

s =I [ch(C - cn/chC] s’ 

co& = e/ch(C - cn), sine = th(C - cn) 

where 

cos6’ = e/chC, sin0’ = thC (2.5) 

(that is, terms independent of H and s’ are left in the expression for 8 while, correspondingly, terms 
which are linear in Hand $’ are retained in the expression for s) or, in the coordinates C, s, where C 
is chosen according to (2.5) and the primes are omitted, 

C+C-cn, s c0se = const (2.6) 

It is seen that the invariant Liouville measure of the Hamiltonian flow of the reduced system generates an 
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invariant measure of the recurrence mapping on a three-dimensional surface which, when s = 0 and H = 0, has 
the form ds(s’)AdHADB(tY). It can be verified that the mapping Si in the approximation being considered 
retains this 3-form. Actually, it follows from (2.5) that de’ = cos B’dC and, hence, d (s’ cos 0’) AdC = ds’ A do’, 
after which it is convenient to use formula (2.6). An analogous result is apparently also valid for the mapping 

&I. 
In order to study motions close to the separatrix W it is advisable to take the three-dimensional 

area IIf or n- and to consider the corresponding recurrence mapping S = StOSo or S = ScOsl which 
will be two-dimensional when account is taken of the presence of the integral H. If it is assumed that 
the area is defined by the condition ([PII = const or 11 Qlj = const, then the corresponding time of the 
motion is kln(32mlw) with an error of O(olnw) in the sense of the definition given earlier. 

We note that all of the estimates 0 (w) and 0 (wln o) will be uniform on any compacturn from the 

space of the parameters of the problem 

&,a’,bl)ER3: a>O, u*>O, bl ER, b: < au*1 

3. PERIODIC MOTIONS CLOSE TO THE SEPARATRIX 

As applications of the results in Sec. 2, let us consider the questions of periodic solution close to the 
separatrix of an HA gyroscope for which c> 0. In order to do this, it is necessary to find the periodic units of the 
recurrence mapping S. The periodic point of the mapping S which has the smallest period 12 corresponds to an 
n-detour periodic solution, that is, a solution which circumvents the separatrix n times. All quantities are 
subsequently indicated with an error O(wlnw). 

1. When s = 0 and H > 0, the mapping S only has two fixed points 0 = 8’ = + 7~12. They correspond to planar 
rotations which exist under Hessian conditions by virtue of the symmetry of the problem. Simple calculations 
show that the eigenvalues of the mapping S at the fixed points are exp(+c?r). Consequently, the planar 
rotations are hyperbolic. It is seen from an analysis of the change in the angle 0 = 8’ during the iterations of the 
mapping S that the two-dimensional regular surface MAC M4 which is cut out by the energy integral H and the 
particular Hessian integral coincides with the outgoing sepatrices of one of these hyperbolic trajectories and 
with the ingoing separatrices of the second. An analogous result for any H> 0 follows from the second equation 
of (1.3) since pap,,(H)>0 always. 

2. When s = 0 and H< 0, the mapping S does not have points with an odd period (for sufficiently small -H). 
The formulas obtained in Sec. 2 do not suffice to find the points of even period. Actually, it follows from these 
formulas that the entire circumference s = 0 consists of the fixed degenerate points of the mapping S2. This 
picture can be destroyed by the terms O(olnw) which have not been taken into account. In particular, to a 
planar vibration (a librational motion) of the gyroscope there correspond the fixed points of the mapping S*, 
which are O(H)-close in the sense of the definition in Sec. 2 to s = 0, 0 = -0’ = +rrl2, while the eigenvalues 
are real eigenvalues which are 0 (Hln( -H))-close to unity. By making use of symmetry considerations, it can 
be shown that, for all 0> H = E - r> -2r, the surface M$ is filled with closed degenerate trajectories. The 
mapping S therefore actually has a closed curve of degenerate fixed points which are O(H)-close to the 
circumference s = 0. It is unclear, however, whether there are other fixed points in the O(HlnH)- 
neighbourhood of this circumference. 

3. When s # 0 and H > 0, the mapping S has two fixed points 0 = - 0’ = Marctg [sl(kH)] mod r and it can be 
found that 

s/(&H)=-ZeshC/‘(l- ah’C); C=Cn/2, tg8=-rshC 

and the constant sh C< 1 holds. 

(3.1) 

4. When s # 0 and H< 0, the mapping S has two fixed points 

~9 = - 19’ = H (arc tg[s/(kH)] - n) modn 

formulas (3.1) hold and, moreover, the constraint sh C> 1 holds. 
5. In the limiting version for cases 3 and 4 we have shC = 1, H = 0, 8’ = -0 = rrI4modm or 3rrl4modn, 

respectively, when s < 0 or s > 0. Then, as in case 2, we have whole lines consisting of degenerate fixed points of 
the mapping S with terms O(wlnw) which have not been taken into account. 

Simple calculations show that the trace of the linear part of the mapping S at the fixed points for cases 3, 4 
and 5 is 
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A~u~=2[1-2u(l-u)/(l+u)‘], u=shac. 

The next assertion follows from the arguments which have been presented. 

Theorem 1. 1. All of the single-detour periodic solutions which are sufficiently close to the separatrix are 
described by cases 1, 3 and 4 which excludes the obscure situation of case 5 for sh C = 1. 

2. Solutions which are described by cases 3 and 4 are elliptic when shC< 1, that is, c<c* = 
2~~11n(l+~)~0.561(case3)orhyperbolicwhenshC>1,thatisc>c~(case4). 

Remark. The function A(v) decreases when v < l/fi. that is c< c** = 27~~’ [ln( 1 + V%???) - ‘/4ln3]) 
~0.446 and increases when v> l/V?, that is, 
A(l/fi) = 6(2-fi)-1.61;A(v)+6 when ~-++a. 

when c>c**. The minimum value of A(v) is 

4. SPLITTING OF THE SEPARATRICES OF THE PERTURBED PROBLEM 

Using first-order perturbation theory, let us study the splitting of the separatrices of an unstable 
permanent rotation if the HA conditions are violated. By virtue of the symmetry, it is sufficient to 
consider perturbations under which just one of the following three quantities varies: u22 (or all), 
a12, j. Here A = (Uij) is a gyrational tensor which corresponds to a moving system, the first axis of 
which is directed from the point of support to the centre of gravity. It is convenient to introduce the 
parameter 

(the arbitrary factor d which has the dimensions of “moment of inertia-2 x time” serves to reduce 
the terms to a single dimension), which characterizes the difference between the gyroscope which is 
being considered and an HA gyroscope. 

In order to study the behaviour of the solutions of the reduced system (1.1) as a function of the 
value of the constant area j, it is convenient to proceed in the following manner. Let us put 
M = G -jr. Then, (M, 7) = 0 and, after replacing G by M, Eqs (1.1) preserve their form but the 
angular velocity will be calculated using the formula o = AM + jAy. Hence, the case when j#O 
reduces to the case when j = 0 with a change in the formula for the dependence of w on M, y. 
Henceforth, M = (x, y, z). 

So, there are three independent perturbation parameters (Y = u22 - all, /? = al2 and j. 
It is convenient to use the well-known technique [13, 141 in order to study the splitting of the separatrices. 

Let W be the unperturbed (binary) separatrix and W+ and W- be the perturbed ingoing and outgoing 
separatrices, respectively. Let UC R6 {M, y} be a certain domain such that: (1) the closure I!? does not contain 
the unperturbed fixed point of the reduced system (l.l), and (2) the boundary 8U transversally intersects the 
unperturbed separatrix W. There then exists an analytic retraction n: U-+ W (that is, a mapping which is 
identical in the set Lit W). The unperturbed separatrix W is singled out by the three classical integrals of the 
problem and the particular Hess integral x = 0. We match points w’ E W’ to each point w E U tl W such that 
rr(w ‘) = w. Let x?(w) be the x-coordinate of a point w’ E R6. 

In order to study the splitting of the separatrices W’, it is necessary to calculate the first-order terms in the 
expansion of the Mel’nikov function A(w) = x(w) -x+(w) with respect to the small perturbation parameters a, 
/3 and j. For this purpose, it is sufficient to know the formulas of the unperturbed doubly asymptotic solutions 
(1.2), (1.4) and the corresponding differential equation for the change in x: 

x’=-b,xz+cryz+p(y* -z’)+j(u*(y7, -zy,)-t~,zr,) +.. 

(terms of higher order with respect to (Y, p and j are denoted by the string of dots). After transforming to 
dimensionless variables using (1.2) and (Y = b, (Y’, p = btfi’, this equation has the form (the primes are omitted 
here and henceforth) 

dxjdr=x’=-zx+ayz+P(y* - z’)+j( 1 (yr2 - zy,) - 27,) +. . 
C 

(4.1) 

The functions x*(w) are analytically dependent on the small (Y, /3 and j and, to calculate the first-order terms, 
it is advisable to proceed in the following manner. Let v(t) be a doubly asymptotic solution (1.4) such that 
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v(T) = w for a certain T and v*(t) is a solution, lying on W’, which is asymptotic when t-+ +a, respectively, 
and such that v,(T) = w’; x+(t) is the x-coordinate of a point v+(t) which satisfies (4.1). In order to find the 
first-order terms in the expansion ofx*(t), it is sufficient to solve Eq. (4.1) under the assumption that the values 
of y, z, yc, yi and y2 correspond to the unperturbed solution v(t) and the boundary condition x&(t)-+O, 
t+ + CQ, which corresponds to the fixed point of the reduced system, is imposed. Equation (4.1) will then have 
the form x’ =f(t)x +/z(t), where f(t) = -z(t) and h(t) are known functions of time. A simple calculation 
shows that -zdt = d(ln chg). 

By using the method of undetermined multipliers, we obtain the solution in the form 

x*(t)= chgj - hU*) dt 

fin chgtt,) ’ 

[g(ti) is the value of the function g calculated under the assumption that t = tl] and, consequently 

~(,v)=x_(T)-x+(T)=~~~(T)Z 

apart from higher-order terms, where 

/; hod, 
_oD chg(t) 

By making the substitution 1= 2arctge: it can be shown that 

I= aI,+ PIP+ jIi 

I,= EC~J, Ip= c~J~ Ii= Ji 

J,=j sin, *d,, Jp=jSd(z - 
0 ch”g 0 ch’g 

& )dZ 

J,. = j (- 2 = t CCOS21 
Sk? 

- )dl, g=C- cl 
0 chg ch’g 

On returning to the initial (dimensional) quantities, we obtain 

I, = 4cmJe, Ip= 4m Jp, Ii = J; 

Without loss of generality, we shall assume that the perturbed Hamiltonian vanishes at the fixed point. Next, 
the perturbed Hamiltonian can be reduced to the form H = HZ + O(d) by means of a certain canonical 
substitution which is analytic with respect to the perturbation parameters a, p and j and identical when 
(Y = /3 = j = 0, where the quadratic terms HZ are of the order of O(w). (This is possible due to the fact that, 
after reducing HZ to the proper form, the terms 11 Z’ll’ll WII, 11 PII 11 Q II’, r 2 2 remain remote from resonances.) Let 
s and s’ be the variables which have been “rectified” in accordance with this substitution. The separatrices W+ 
and W- then satisfy the conditions s = 0 and s’ = 0 respectively. Let s+(w) be the s-coordinate of the point w- 
and s_(w) be the s’-coordinate of the point w+. It follows from the results in Sec. 2 that, in the case of the 
unperturbed system, the relationships 

-dx = A_ds’ = At ds, A+ = chg(TWg(* -) 

are satisfied on the separatrix W. 
The expansions of the functions s&w) in series over (Y, p and j therefore hold and, in the linear 

approximation, 

s* (n’) = r Zchg(i 0) (4.2) 

The following general result also follows from this. In the linear approximation with respect to (Y, p, j, s and 
H, the second of the transition formulas (2.6), ST: (H, s’, fY)+ ( H, s, 0) (here ST is a “perturbed” mapping 
Si ) takes the following form in the domain V: 

scose = --EI+ s’cod. (4.3) 

When there are no perturbations, I- 0 and (4.3) reduces to (2.6) and, when H = 0 and s’ = 0 or s = 0, (4.2) 
follows from (4.3). These results will be used in Sec. 5. 

Theorem 2. 1. Let c > 0. Then, for sufficiently small 6, the splitting of the separatrices W+ and W- 
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is of the order of S (see [9]) and this estimate is uniform on any compacturn in the space of 
parameters which correspond to HA gyroscopes with c > 0. 

2. Let c = 0, that is, the unperturbed problem is the Lagrange case. Then, for sufficiently small 6, 
1 c 1, the splitting of the separatrices W+ and W- is of the order of max { 1 a 1, 1 p 1, 1 djc I} = a1, and 
this estimate is uniform on any compacturn in the space of parameters which correspond to the 
Lagrange case. 

Proof. Point 1 immediately follows from the following assertion. 

Lemma. When c>O, the quantities Z, , Zp and Z, , as functions from the set (C, E), are linearly 
independent, that is Z = aZ, + PIP +jZj = 0 for all C, E only when (Y = /3 = j = 0. 

In order to show that this is so, it is sufficient to make use of the asymptotic formulas 

chg- %explgl, shg- ‘Asigngexplgl, g-*fa 

and to carry out simple calculations. 
In the case when c = 0, we have Zj E 0 but the function c-‘ZjlC=,, is defined correctly and it is not 

identically equal to zero. It can be shown that the lemma which has been formulated above holds if, 
instead of Zj and j, one takes c-‘Zj ICE0 and jc, respectively. Next, in the expansion of A(w) in terms 
of (Y, ~3, j and c, there are no terms of the form j’ or cr, since A=0 in the HA case, when 
(Y = p = j = 0, or in the Lagrange case, when (Y = p = c = 0. Point 2 of the theorem follows from 
this. 

Corollary. The separatrices W + and W- are not split only when the perturbed problem is the 
Lagrange case or the areas constant is equal to zero and the HA conditions are satisfied. 

We note that the splitting of the separatrices of the hyperbolic periodic solutions of a perturbed 
Euler-Poinsot problem (with an arbitrary value of the areas constant), which are obtained from 
permanent rotation around the central axis of inertia in the unperturbed problem, has been studied 
previously in [6,5]. It was shown that the separatrices are always split, apart from in the HA case, 
when two pairs of separatrices remain double and coincide with the surface ML (compare with point 
1 in Sec. 3) while two others are split. 

Remark. 1. If the separatrices W’ of a hyperbolic point of a Hamiltonian system with two degrees of 
freedom are split, they have at least two different lines of traverse intersection or tangency of odd order 
(compare with [l, 91). 

The proof is elementary and is based on the use of the PoincarbKartan integral invariant. In particular, this 
assertion is applicable to the reduced system (1.1) which can be represented in Hamiltonian form. In the case 
being considered, it also readily follows from the equality 

+OO 
J IdC=O for l =fl 

-00 

2. A simple calculation shows that, in the case of a perturbation of a Lagrange gyroscope, 

where cp = cp- = ‘p+ is the angle which numbers doubly asymptotic trajectories. It can be shown that, for small 
6, #O, there always exists a line of transverse intersection of the separatrices and even two such different lines if 
the parameters a, p, j and c do not lie in analytic manifolds with a codimensionality two, the equations of 
which, in the approximation which is linear in (Y, p and jc have the form /? = 0, a + jcn = 0. 

5. APPLICATIONS TO THE PERTURBED LAGRANGE PROBLEM. ONE- AND 
TWO-DETOUR TRANSVERSAL HOMOCLINIC SOLUTIONS 

In the case when c = 0, an HA gyroscope is a Lagrange gyroscope. Below, we will consider the perturbation 
of the Lagrange problem under which the centre of mass is shifted from the axis of dynamic symmetry in a 
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perpendicular direction and the areas constant j = 0. As the perturbation parameter p>O, we shall take the 
angle which is made by the axis of dynamic symmetry and a vector drawn from the fixed point to the centre of 
mass. Without any loss of generality, it may be assumed that the moments of inertia of the body are A = B = 1, 
C# 1. Then, in the proper special system of coordinates (the first two axes of which form the plane of symmetry 
of the gyroscope), the expressions 

a =C-’ + Kg’ + O(p’), a, = 1 - Kp’ + O(p’) 

b, = Kp + O(p’), b, = 0, aI = 1; K = C-‘(C - 1) 

hold for the components of the gyrational tensor where the quantities II and al are even with respect to p, and 
b1 is odd. A perturbed Lagrange problem can therefore be considered as a perturbation of an HA gyroscope 
with the parameter LY = a2 - a1 = Kp2 + 0 (y”) for which 

a’=aI = 1, c- 26,/a*= 2Kg+ Olp’). 

In view of this, the splitting of the separatrices is of the second order of smallness with respect to /J which was 
also discovered in [l]. The Mel’nikov function A(w) = x-(w) -x+(w) is expanded in a series with respect to LY 
with functional coefficients which depend on c. It is seen that 

A(W)= d,I,=o+. . .‘w2fofq)+. . . , f,,(q)= 8Kfisinqcoq 

with an error in the terms which are cubic in /I. Here, cp = cp_ = cp+ is the angle which numbers doubly 
asymptotic trajectories of the Lagrange problem. 

The function fO(p) has four zeros and they are all simple. Hence, the perturbed separatrices W’ have 
precisely four lines L, cl) of transversal intersection. The so-called single detour homoclinic solutions (which pass 
round the unperturbed separatrix once) correspond to the lines. Of these four solutions, two are planar (the 
corresponding zeros of the functionfO(cp) are cp = +77/2), that is, rotations around the third axis of inertia, while 
the two others are close to rotations around the second axis of inertia. 

Let us now find the transversal homoclinic solutions Li2) which are two-detour solutions, that is, which pass 
around the unperturbed separatrix twice. According to Sec. 4, the lines I, = W- nII+ and I- = W+ ITII- in 
the areas II+ and II- are, respectively, defined by the equations 

I+: H=O, s=s+=f+(e); I_: H=o, s’=s_=f_(e’) 

f*(lpt)= rd,dcosq* +. . . 

where His the unperturbed Hamiltonian and s and s’ are the “rectified” variables. It can be found that 

f+(e)= cc’(‘fo(B)+rfi(e)+ O(r’)) 

f, ce) = 8sK’,/?(Zcose - 3cosse) 

Following what has been said in Sec. 2, let us consider a neighbourhood U of the set g = W+ n II’ in rI+ and 
the mapping S<: U,g+n- along the trajectory of the perturbed system. A required line Li2) of transversal 
intersection of the separatrices W+ and W- corresponds to a point of transversal intersection of the curves 
&(I+) and I_. The mapping G is completely analogous to So which was constructed in Sec. 2. Let the constants 
rl > 0, r2 > 0 and let the domain DC U be defined by the inequalities rI p2 < o < r2p2. Then, the time of the 
motion from rI+ to II- is O(ln/.~) for any point from D. We note that a system linearized at a fixed point 0 in 
the coordinates P and Q experiences a perturbation O(p2). Arguments, which are similar to those in Sec. 2, 
show that the mapping S;;: (H, s, @)+(H, s’, 0’) in domain D has the form (2.4) and s = s’ with an 
O(wlnw) = 0(~21n~)-small error (in the sense of the definition from Sec. 2). Then, when H = 0, we obtain 

e’=e-‘/insigns+O($lnr) 

In order to find the point of intersection G (1,) n I_, let us consider the equation 

(5.1) 

R(e)=+--s_=-f_(e’)tf+p)= 0 

where 0 and 0’ are related by the equality (5.1) and satisfy the conditions 

(5.2) 

Ifo(e)i > Zr,, ifo(e’)t > 2r,, ‘I, > 0 

The terms in R (0) accompanying p2 then cancel out since fo(@ + FO(O Z!Z ?&r) = 0. We have 
p-3R(e) = -87rKVQ l sine+cose)(1-3~cosf3sine)+O(~ln~), l =signf~(@). 

When K<O, that is, when C< 1, Eq. (5.2) has four simple zeros which are O(plnp)-close to the numbers 0 
which are such that tg 0 = 5~ 1. 
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When K>O, that is when C> 1, Eq. (5.2) has eight simple zeros which are O(~ln~)-close to the numbers 0 
which are such that sin28 = f%. 

Let V be the neighbourhood of the separatrix W, the boundary of which is a smooth three-dimensional 
manifold which is transverse to all of the doubly asymptotic solutions of the unperturbed problem. For small 
/.L # 0, the set Vn LF has two connected components L’ (L; corresponds to a smaller value of time t). 

Definition. We shall say that a two-detour homoclinic trajectory Li2’ is of the type (0,. 0,) if L,r--+v-(tIi), 

L~~+v-(&), p+O, where v”(0) is the trajectory of the unperturbed Lagrange problem when j = 0, which 
corresponds to the doubly asymptotic solution for which cp- = p+ = 0. 

Sheets of separatrices W’, lying in the domain V close to the limiting point 0 (for the smallest or greatest 
possible value of the time t, respectively), have previously been considered. The separatrices W* may continue 
along trajectories of the system through a small neighbourhood of the point 0. As a result, we obtain another 
set of sheets of separatrices WL and W_‘. (These sheets will already be unconnected by virtue of the 
intersection of sheets W’ of the “first order”.) In particular 

$“(/+I= W :n It+, L; C W- n w’, L; c W; 17 W+. 

Theorem 3. 1. The separatrices W’ of a perturbed Lagrange problem have four lines L$‘) of tranverse 
intersection which are single-detour homoclinic trajectories. Two of them correspond to planar solutions and 
the other two correspond to solutions which, in the domain V, are 0 (EL)-close to rotations around a horizontal 
axis lying in the plane of symmetry of the gyroscope. The splitting of the separatrices W’ is of the order of 
O(p*) and, moreover, this estimate cannot be improved. 

2. Transversal two-detour homoclinic trajectories L, c2) of the following types exist: 

lo. (0, -@I, where B E 1*:/4, *3n/4\, if C< 1. 

2”. (e,, 0,). (0,. e,), where e, -8, +42, 8, E {nn+I, nn+n/2 -I, wheren=O; 11, Z=Marcsin%, 

if C>l. 
In the domain V, the connected components L,* of L, (*) will be O(pln/_~)-close to the corresponding doubly 

asymptotic trajectories v-(0) of the perturbed problem. 
3. The sets W? lie in an 0(p3)-neighbourhood of W+U W-. The set W+ (W- respectively) lies in an 

0(p3)-neighbourhood of WI (W_’ respectively). These estimates cannot be improved upon for any small 
/.L#O. 

Proof. Points 1 and 2 follow directly from the arguments which have been presented above. In order to prove 
point 3, it is necessary to note that, first, it is possible to expand the domain D by assuming that it is defined by 
the conditions rIIp13<w<r2p2 and, second, that the mapping S;; converts a point in II+. for which 
IwI<riI/.13intoapointforwhich Io/<2rlIp13. 

Using methods which have previously been proposed [l], it is possible, from the results of point 2 of 
Theorem 3, to infer the existence of quasi-random motions and the non-integrability of the perturbed Lagrange 
problem in the case of a zero value of the areas constant and a fixed small /.L # 0 at energy levels which are close 
to the critical level. 
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The design of shuttle-like hypersonic spacecraft 170,771 gives rise to the problem of investigating the spatial 

configurations that are optimum from the point of view of thermal heating and other characteristics, which 

enable the weight of the required thermal protection to be reduced. The problem of optimizing the weight 

of thermal protection depends on many parameters and has not yet been solved in a rigorous mathematical 

formulation. Approximate formuiations of the optimization problem have therefore been considered, the 

solution of which has enabied axisymmetrical optimum shapes of bodies to be obtained with the minimum 

convective 143, 61, 731 and radiation [35-37, 58, 601 heat fluxes. It is known from attempts to solve 

variational problems of a body with minimum drag [29-31, 51-53, 621, that the transition to essentially 

three-dimensional configurations enables a reduction in the drag to be achieved compared with axisymmet- 

rical bodies. A similar situation should obviously also occur when optimizing the shape of a body for heat 

flux. In this paper we present for the first time variationai problems for finding the optimum shape of 

three-dimensional bodies of minimum overall thermai heating when moving along an incoming trajectory. 

In papers by other authors [21, D-31, 48, 51-53, 621 the problems of determining the three-dimensional 

optimum aerodynamic shapes from the point of view of the minimum wave or total drag were considered. A 

brief review is given of research which has been done to determine the convective and radiation heating of 

three-dimensional bodies and the fundamental formulas for the wave drag, the fraction drag, and the 

convective and radiation fluxes to three-dimensional bodies moving in dense layers of planetary atmos- 

pheres are presented. The formulas depend explicitly on the conditions of entry into the atmosphere of the 

planet and on the geometry of the body, which enables variational problems to be formulated on 

determining the three-dimensional shape of the body from the conditions for minimum overall heating 

(convective and radiation) of the surface along the trajectory of motion. 

1. FORMULATION OF VARIATIONAL PROBLEMS ON CHOOSING THE OPTIMUM SHAPE 

OF THREE-DIMENSIONAL BODIES OF MINIMUM OVERALL HEAT TRANSFER 

CONSIDER the motion of a three-dimensional body in a planetary atmosphere along a plane 
trajectory at a hypersonic velocity acted upon by a lift force, a frontal drag, a gravity force and a 

t Prikf. Mat. Mekh. Voi. 56, No. 4, pp. 643-657,1992. 


